Midterm Exam Complex Analysis 16/12/13, 09.00-11.00

1. Let f(z) be a complex function, $z_0 \in \mathbb{C}$. Assume that f(z) is differentiable in z_0 . Let g(z) be such that for all $z \neq z_0$

$$f(z) = g(z)(z - z_0) + f(z_0)$$

$$z + y^2$$

$$z + 2y$$

(a) Show that $\lim_{z\to z_0} g(z) = f'(z_0)$

(b) Show that f(z) is continuous in z_0 .

2. Consider the function $f(z) = |z|^2$ on \mathbb{C} . VE70 38 OC1500-6168 17-0/< 8.

(a) Prove that f(z) is differentiable in z=0.

(b) Is f(z) analytic in z = 0? Explain your answer.

3. Let f(z) be an entire function with the property that $f(z) \in \mathbb{R}$ for all $z \in \mathbb{C}$. Prove that f(z) is a constant function.

4. In this problem, we denote by log(z) the logarithmic multi-valued function. By Log(z) we denote the principal branch of this function.

(a) Prove that $e^{\log(z)} = z$ for all $z \neq 0$.

 $e^{i \cdot i}$ $e^{-i \cdot i}$ (b) Compute log(i) (c) Determine z such

eter-é

(c) Determine z such that $Log(z) = \frac{1}{4}\pi i$.

5. Let Γ be any contour with initial point z=i and terminal point z=-i. Compute

 $\int_{\Gamma} \sin(z) dz$

6. Consider the complex function $f(z) = \frac{1}{z^2-1}$.

- (a) Compute a partial fraction decomposition of f(z).
- (b) Late Γ_1 be the positively oriented closed contour |z|=2. Compute the integral $\int_{\Gamma_1} f(z)dz$.

Points: 1: 7 + 8, 2: 8 + 7, 3: 15, 4: 5 + 5 + 5, 5: 15, 6: 5 + 10; 10 for free.